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Abstract
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1 Introduction

Governments purchase everything from airplanes to zucchini. This paper addresses the question
whether the technological content of public demand plays a role for private innovation activities.
The idea that government purchases can stimulate innovation is grounded in the results of several
early studies suggesting that innovation is sensible to general demand conditions (e.g., Gilfillan,
1935; Mill, 1848; Schumpeter, 1942). On the one hand, increasing sales permit the financing of
uncertain R&D activities. On the other hand, the size of the (expected) market for an innovation
determines its attractiveness for firms, dictating how the firms make practical use of their scientific
ideas. Schmookler (1966) uses U.S. patent data to document that inventive activity tended to lag
behind the peaks and valleys of the output of a commodity. From this observation, it was inferred
that invention responds to profit motives. Griliches (1957) provides evidence that technology
adoption is affected by market size as well. Moser (2005) analyzes innovation data from the
catalogues of two 19th century world fairs. She finds that market size has an important influence
on both, the number of innovations and the distribution of innovative activity across industries.
Acemoglu and Linn (2004) and Rosenberg (1969) likewise suggest that demand “steers” firms to
address certain problems. The importance of market size and profit incentives in innovation is
also acknowledged by endogenous growth theory (Aghion and Howitt, 1992; Romer, 1990; Young,
1998).

In the recent years, public procurement, that is, the purchase by governments of goods and
services, has often been advocated as one meaningful way to stimulate innovation (for an overview,
see Edler and Georghiou, 2007). Many countries have launched initiatives to foster government
purchases of high-tech and innovative solutions (OECD, 2011). These policies are typically justified
by referring to historical examples suggesting that a number of highly influential technologies have
been developed in the 20th century with the impetus from government demand, such as computers,
semiconductors, and the GPS (Mowery, 2008; Nelson, 1982; Ruttan, 2006).1 Moreover, Nelson and
Langlois (1983) show that the U.S. government was a major driver of the development of industries
in which it was an important customer. The underlying argument is that the government can create
and enlarge markets and thereby induce private R&D investment on a scale that would not have
otherwise followed even the most promising research results.

However, previous research has mainly focused on a number of highly situational case studies
and anecdotal evidence without conclusive results (Cohen and Noll, 1991; Edquist and Hommen,
2000). Only a handful econometric studies examine the relationship between government market

1 Studying the Canadian public sector, Dalpé, DeBresson and Xiaoping (1992) find that every fourth innovation
has its first use in the public sector, as do 13 percent of patents.

1



size and innovation, all of which are based on firm-level data (Aschhoff and Sofka, 2009; Licht-
enberg, 1987, 1988). These studies, however, either rely on doubtful proxies for the existence of
procurement contracts in firms (Aschhoff and Sofka, 2009) or refer to a limited set of data on the
biggest private contractors (Lichtenberg, 1988).

Moreover, notably absent in the existing literature is a discussion of the innovation effects of
government procurement that take into account the types of products bought by the government.
This lack of research is surprising because it has been suggested that the stimulus of private R&D
and innovation by procurement is especially pronounced for the most advanced technologies (Hart,
1998). Cozzi and Impullitti (2010) argue that an essential part of the realignment of U.S. innovation
policy in the late 1970s and 1980s was a shift in the composition of public spending toward
industries of significant technological content. Then, the authors present some descriptive evidence
indicating that the timings of these shifts are correlated with increases in private R&D spending.
However, although suggestive of an association, these studies do not attempt to econometrically
establish the link between the dynamics of the inter-industry composition of government purchases
and private R&D activities. This paper attempts to fill this gap.

We embed our empirical work in a theoretical model to ensure that we test well-defined hy-
potheses. The model sheds light on the transition mechanism for government procurement on
firms’ innovative behavior. We follow the stratum of the traditional endogenous growth theory in
which long-term growth results from quality-improving innovation (e.g., Aghion and Howitt, 1992;
Grossman and Helpman, 1991a,b), while accounting for the government as an additional source of
demand. In the model, industries are heterogeneous in terms of their innovation sizes or quality
jumps. Our main theoretical result indicates that when the composition of government purchases
changes to the benefit of industries with an above-average quality jump, that is, high-tech indus-
tries, the firms’ incentives to engage in R&D increase. The mechanism is as follows: A shift in the
technological content of public purchases toward high-tech industries translates into a larger flow
of expected profits of firms trying to innovate in these industries. The rewards for successful R&D
activities increase because higher innovation size implies higher markups over marginal cost. The
reallocation of government procurement from low-tech to high-tech industries stimulates R&D on
the level of the aggregate economy as the increased R&D in high-tech industries outweighs the
R&D foregone in the remaining industries due to their smaller government market.

The model is closely related to that developed in Cozzi and Impullitti (2010), but deviates
from it in a number of important ways. On the one hand, we incorporate recent developments in
the endogenous growth literature that elegantly set forth how industries differ in terms of their
innovation capacity (Minniti, Parello and Segerstrom, 2008). Imposing a specific assumption on
the inter-industry distribution of quality jumps allows a more rigorous analytical treatment of the
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model as compared to Cozzi and Impullitti (2010). Specifically, we can theoretically derive an
explicit expression that links the technological content of government purchases to private R&D
activities. On the other hand, Cozzi and Impullitti (2010) are primarily interested in exploring
the effects of the inter-industry composition of procurement on the endogenous formation of skills
and the skill premium, respectively. To this end, they distinguish between low-skilled and high-
skilled labor employed in different sectors of the economy. We, however, focus on the impact of
government purchases on firms’ R&D decisions, neglecting educational choice and sector-specific
skills.

Having theoretically identified the transmission mechanism for the technological content of
government procurement on private R&D activities, we analyze the empirical plausibility of the
model’s predictions for the U.S. To the best of our knowledge, this study is the first to empirically
assess the effect of the composition of government purchases, as opposed to their sheer volume, on
private R&D behavior. The analysis is performed at the level of U.S. states for the period from
1997 to 2009. In particular, we construct a unique panel data set covering the whole universe of
federal procurement contracts, cross-classified by state and type of industry. These administrative
data are provided by the U.S. General Services Administration. We merge the procurement data
with information about private R&D employment, measured as weekly hours worked in R&D-
related occupations. For the purposes of the empirical study, industries with quality jumps above
the economy-wide average are proxied by high-tech industries using the standard industrial clas-
sification developed by the U.S. Bureau of Labor Statistics (Hecker, 2005).

The OLS estimation of the relationship between the technological intensity of government
purchases and private R&D will be biased if there is a systematic relationship between unobserved,
state-specific factors and the variable of interest. To identify the causal effect of the technological
intensity of government purchases on private R&D, we apply instrumental variable (IV) techniques.
We exploit the idea that procurement in high-tech industries is particularly high in states whose
governors belong to the majority party in the Congress. The intuition for the instrument is readily
accessible: Governors may expect that increases in procurement will stimulate a state’s economic
performance, positively affecting their re-election chances. Procurement in high-tech industries is
particularly attractive for politicians because it is more prestigious than procurement in general.
To deliver (high-tech industry) procurement to their constituents, however, governors need support
from the Congress, the latter holding the “power of the purse.” As the party caucus represents a
coalition that provides selective benefits to its members, Congressmen are more likely to transfer
money to the state level if the state is governed by a “friendly” politician.

The empirical analysis provides support for the prediction of the model, namely, that a shift
in the composition of procurement toward high-tech industries stimulates private R&D activities.
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The OLS results indicate that a doubling of the procurement high-tech share, measured as the
proportion of procurement in high-tech industries in a given state, is associated with an increase
in R&D employment of approximately 2.6 percent in that state. In terms of the number of hours
worked, this represents an increase of approximately 113,000 hours. Our finding is robust under
a range of alternative specifications. For instance, in addition to controlling for state and year
fixed effects, we include a linear state time trend that allows unobserved state R&D employment
patterns to trend linearly over time. Moreover, the results are also robust to excluding influential
states, such as California or Florida. The IV models yield point estimates on the technological
intensity of government demand of the same magnitude as the OLS coefficients, but are estimated
with far less precision. However, exogeneity tests suggest that the IV estimates do not significantly
differ from the OLS results. Therefore, we cautiously conclude that our OLS estimates can indeed
be interpreted as being of a causal nature.

The remainder of the paper is organized as follows. Section 2 introduces the basic model
linking firms’ R&D efforts to the technological composition of government purchases. In Section
3, we discuss the specification and estimation issues concerning the empirical assessment of the
model’s implications. In Section 4, we introduce the data and describe the construction of the key
variables. Section 5 presents our findings. Section 6 summarizes and concludes with some policy
implications.

2 The Model

To link government procurement to innovation and economic growth, we develop a simple endoge-
nous growth model. The economy in the model is closed and consists of two sectors: a final goods
(or manufacturing) sector and a research sector where firms seek innovations. To avoid unnecessary
complications and to highlight the basic forces at work, labor is the only input factor used in both
sectors and is not further differentiated. Labor supply decisions are treated as being exogenous.
There is a continuum of industries in the unit interval indexed by ω ∈ [0, 1], with each industry
producing exactly one consumption good (or product line). The outputs of the different industries
substitute only imperfectly for each other. The set of commodities is fixed in the progress of time.
Innovation is vertical, improving the quality of each consumption good, and requires targeted R&D
efforts of firms at a respective product line. Let the discrete variable j ∈ {0, 1, 2, ...} denote the
quality level. Each innovation in industry ω leads to a quality jump from j to j + 1. The quality
increments, denoted by λ, happen independently of each other. Thus, an improvement in one
industry does not induce an improvement in any other industry.
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Different from previous endogenous growth models with vertical innovation, which treated
industries symmetrically (e.g., Aghion and Howitt, 1992; Grossman and Helpman, 1991a,b; Li,
2001, 2003; Segerstrom, 1998), we assume the size of the quality jump after a successful innovation
to be uncertain and industry specific. In line with the more recent work by Minniti, Parello
and Segerstrom (2008), the realization of each R&D race is drawn independently from a Pareto
distribution. Modeling the size of the quality jump as a Pareto distributed random variable is
supported by the patent (including citations) literature. For instance, Scherer (1965) analyzes the
patent activities of the 500 largest firms in the U.S. He finds that the distribution of U.S. patent
values (measured by profit returns) is highly skewed toward the low-value side and heavy tailed
to the high-value side, which comes fairly close to the generic properties of a Pareto distribution.
Similarly, in a more recent work, Harhoff, Scherer and Vopel (2005) ask patent holders in Germany
and in the U.S. to estimate the value of their inventions and find a distribution of values that is
strikingly close to the Pareto distribution.

On the consumer side, each household is modeled as a dynastic family whose size increases over
time at an exogenous rate n. Each household member inelastically supplies labor in exchange for
wages. We normalize the total number of individuals at time t = 0 to unity by the appropriate
choice of unit. Thus, the population of workers at time t equals L(t) = ent. The intertemporal
preferences of the representative household are given by:

U(t) =
ˆ ∞

0
ente−ρt log u(t)dt, (1)

where ρ denotes the rate of time preference, and log u(t) represents the flow of utility per
household member at time t (see Barro, 1974; Kirman, 1992, for a discussion on infinite-horizon
representative agent framework). Any individual’s instantaneous utility is represented by:

log u(t) =
ˆ 1

0
log

jmax(ω,t)∑
j=0

λj(ω, t)d(j, ω, t)
 dω. (2)

where d(j, ω, t) is the consumption of quality j in product line ω at time t. The utility derived
by an individual from consumption is therefore determined by the quality-weighted amount of
consumption integrated over all industries ω ∈ [0, 1]. The preferences in (2) imply that a consumer
enjoys one unit of good ω that was improved j times as much as λj(ω, t) units of the good if it
had never been improved, with λ(ω, t) > 1. The logarithmic functional form in (2) was chosen for
simplicity and does not affect the main results.

The representative household maximizes lifetime utility (1) subject to the following intertem-
poral budget constraint:
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B(0) +
ˆ ∞

0
w(s)e−

´ t
0 [r(τ)−n]dτds−

ˆ ∞
0

e−
´ t

0 [r(τ)−n]dτT (s)ds

=
ˆ ∞

0
e−
´ t

0 [r(τ)−n]dτc(s)ds,

where B(0) is the ex-ante endowment of asset holdings of the representative household, w(t)
is the wage rate earned by each individual, T (t) is a per capita lump-sum tax, and c(t) is the
flow of individual consumer expenditures. Under the assumption that when a household member
is indifferent between two quality vintages, the higher quality product is bought, the household
maximization problem yields the following static demand function:

d(j, ω, t) =


c(t)

p(j,ω,t) j = jmax(ω, t)
0 otherwise

 , (3)

where p(j, ω, t) is the price of product ω with quality j at time t.
The dynamic optimization problem, that is, the allocation of lifetime expenditures over time,

consists of maximizing the discounted utility (1) subject to (2), (3), and the intertemporal budget
constraint. The solution of the optimal control problem obeys the Keynes-Ramsey rule:

ċ(t)
c(t) = r(t)− ρ. (4)

Because preferences are homothetic, the aggregate demand at time t in industry ω is given by
D(j, ω, t) = d(j, ω, t)L(t).

At any point in time, only one firm possesses the technology to produce the highest quality
product using one unit of manufacturing labor to produce one unit of output. The best-practice
firm has a quality advantage of λ over the next best quality in the industry. The optimal strategy
for the quality leader is to set the limit price pL(ω, t), preventing any other firm in the industry
from offering its product without losses. The quality leader will set a quality-adjusted price below
the unit costs of its nearest competitor while that competitor will come up with a price equal to
his own marginal cost. The highest price the quality leader can set to capture the entire industry
market is his lead over the next best quality follower, implying pL(ω, t) = λ(ω, t)w = λ(ω, t). There
is no incentive for the quality leader to set a price above the limit price because if he did, he would
lose all of his customers.

Government demand, that is, government procurement, is financed by lump-sum tax revenues
and is strictly nonnegative for all industries at any point in time. This assumption allows us to
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isolate wealth effects from the distortionary effects of taxation. Similarly, the government budget
is assumed to be balanced at any time. To avoid unnecessary complications, we abstract from
modeling any effects of public demand expenditures on the individual utility or on the marginal
productivity of private input factors in manufacturing or research. Denoting per capita public
demand spending in industry ω at time t by G(ω, t), the quality leader in each industry earns a
profit flow of:

π (ω, t) = [λ (ω, t)− 1]×
[
c(t)L(t)
λ (ω, t) + L(t)G (ω, t)

λ (ω, t)

]
. (5)

Here, λ(ω, t)
[
c(t)L(t)
λ(ω,t) + L(t)G(ω,t)

λ(ω,t)

]
corresponds to market size (sales to private and public cus-

tomers) for the product being produced in industry ω. The factor [λ (ω, t)− 1] is to be interpreted
as the markup over the marginal cost. Thus, the parameter λ(ω, t) describes the degree of monopoly
power. Given the preferences in (2), the profits in (5) are independent from the quality level, j.

There is free entry into R&D so that firms may target their research effort at any industry.
Labor is the only input used in R&D and can be freely allocated between manufacturing and
research. The frictionless nature of the labor market implies that workers earn the same wage in
R&D as in manufacturing, w = 1. Research is directed in the sense that firms can devote their
R&D resources to developing state-of-the-art products in any industry (Acemoglu and Linn, 2004).
It is important to notice, however, that firms conduct R&D activities in industries in which they
are not the current quality leader, to not cannibalize their current monopoly rents (Arrow, 1962;
Fudenberg et al., 1983; Fudenberg and Tirole, 1985). The aim of each firm’s R&D efforts is a
superior quality and to monopolize the market by achieving a patent with infinite patent length.2

All firms have access to the same R&D technology. In industry ω at time t, a firm engaged in
R&D that employs li(ω, t) units of labor faces a Poisson arrival rate of innovation, Ii(ω, t), equal
to:

Ii(ω, t) = Ali(ω, t)
X(ω, t) , (6)

where A > 0 is a given technology parameter, and X(ω, t) is a function that captures the
difficulty of conducting R&D, which is taken as given by each R&D firm.

The R&D technology in (6) reflects the stochastic nature of the innovation process, while
Ii(ω, t)dt is the probability to win the R&D race and become the next quality leader within the
time interval [t, t+dt]. In (6), the time interval approaches zero. Hence, Ii(ω, t) is to be interpreted
2 In reality, however, patent protection is often less attractive for firms than keeping new knowledge within the firm

(secrecy) or using other means to protect the research results (e.g., Cohen, Nelson and Walsh, 2000; Mansfield,
1986).
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as the instantaneous probability of firm i being successful in finding the next higher quality product
per unit of time. Assuming that the probability of winning an R&D race is independent across
firms, across industries, and over time, the industry-wide arrival rate of innovation in each industry
ω reads:

I (ω, t) = ALI (ω, t)
X (ω, t) , (7)

where LI(ω, t) = ∑
i lI,i(ω, t) and I(ω, t) = ∑

i Ii(ω, t) denote the R&D labor rate and the accu-
mulated arrival rate of innovation, respectively, of all firms in industry ω at time t. The specification
of the R&D technology in (7) implicitly assumes the existence of intra-industry externalities but
abstracts from inter-industry knowledge spillovers (Li, 2003).

Different from earlier R&D-driven endogenous growth models (Aghion and Howitt, 1992; Gross-
man and Helpman, 1991a,b; Romer, 1990), in our model the long-run growth rate of the economy
is not influenced by the population size (no “scale effect” property). Following ? and Segerstrom
(1998), we assume that the R&D difficulty grows in each industry at a rate proportional to the
arrival of innovation:

Ẋ(ω, t)
X(ω, t) = µI(ω, t), (8)

where µ > 0 is exogenously given, and X(ω, 0) = X0 for all ω. Similar to A in (6), the
parameter µ in (8) captures scientific opportunities in the economy.

Once a firm becomes successful in finding an innovation, the size of that innovation is drawn
from a Pareto distribution with a shape parameter 1/κ and a scale parameter equal to one (Minniti,
Parello and Segerstrom, 2008). The probability density function of a Pareto distribution with these
properties reads:

g(λ) = 1
κ
λ−

1+κ
κ , λ ∈ [1,∞), (9)

where κ ∈ (0, 1) is a parameter that measures the degree of the dispersion or heterogeneity of
the Pareto distribution. The mean of the Pareto distribution equals 1/(1− κ).

For analytical tractability, we assume that the initial distribution of λ values is given by g(λ)
at t = 0. Then, as the R&D dynamics start off and successfully innovating firms draw new
values of λ, the distribution of λ values does not change over time. Notice further that X(ω, t) =
X0 for all ω implies that I(ω, 0) = I0 (constant) for all ω. Hence, a symmetric equilibrium path
must exist along which I(ω, t) = I(t) and X(ω, t) = X(t) for all ω. We focus on this symmetric
equilibrium in the further analysis.
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Firms that participate in an R&D race issue securities on a perfect financial market. Let υe(ω, t)
be the discounted value of expected profits for firms in industry ω at time t. The assumption of
no arbitrage on the stock market yields (Blanchard and Fischer, 1989):

πe(ω, t)
υe(ω, t) + υ̇e(ω, t)

υe(ω, t) = r(t) + I(t), (10)

where πe(ω, t) denotes the expected profits earned by a successful innovator. In the stock market
equilibrium, the expected dividend rate, πe(ω, t)/υe(ω, t), plus the expected rate of capital gains,
υ̇e(ω, t)/υe(ω, t), is equal to the rate of return of the risk-free security plus a risk premium. The
latter is given by the flow rate of innovation, I(t), because a producer of the latest quality vintage
who loses his leadership has a stock value of zero. Taking into account that profit maximization
in R&D yields υe(ω, t) = X(ω, t)/A and recalling that the increase in R&D difficulty is common
to all industries in the economy, the dividend rate becomes:

πe(ω, t)
υe(ω, t) = r(t) + I(t)− Ẋ(t)

X(t) . (11)

Before we can derive an expression for the expected profits of a firm winning an R&D race,
πe(ω, t), we have to specify how the government allocates its demand expenditures among the
various industries in our model economy.

Following Cozzi and Impullitti (2010), the allocation of government procurement across indus-
tries is determined as follows:

G(ω, t) = Ḡ+ γε(ω, t), 0 ≤ γ ≤ 1, (12)

where

Ḡ ≡
ˆ 1

0
G(ω)d(ω),

ε ≡

 −ε1 for λ (ω, t) < 1
1−κ

ε2 for λ (ω, t) ≥ 1
1−κ

,

0 < ε1 < Ḡ,

0 < ε2 < Ḡ.

The first term on the RHS of (12), Ḡ, denotes the average per capita public procurement,
that is, the value of public demand spending a quality leader in each industry ω will receive
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if the government spreads its expenditures G(ω) evenly across all industries.3 Such symmetric
treatment of industries occurs for γ = 0. The second term on the RHS of (12) implies that any
γ > 0 corresponds to a public demand policy that more heavily promotes industries with above-
average quality jumps. Specifically, if the quality improvement caused by an innovation in industry
ω is smaller than the average economy-wide quality increment, public purchases in this industry
will be lower than in the symmetric case. However, if an innovator in industry ω draws a value
of λ above the average quality jump, he will benefit more from public spending than under the
symmetric demand policy rule. The higher γ is, the more favorable the government treatment of
industries is with above-average quality jumps vis-à-vis industries with below-average jumps. We
make the simplifying assumption that once an industry experiences a quality jump above (below)
the economy-wide average and γ 6= 0 holds, the government spends more (less) in this industry
irrespective of how far beyond the average this industry finds itself after the quality jump. It
is straightforward to show that the strictly positive values ε1 and ε2, which indicate how much
government purchases in “low-jump” or “high-jump” industries deviate from average spending,
cannot be chosen independently (see Appendix A.1). As stated above, the distribution of the
λ values does not change over time. Thus, although there is uncertainty at the industry level
concerning the size of the quality jump that occurs after an innovation arrives, there is always the
same share of industries with quality increments above or below the average at the macro level.
Moreover, to focus on the effects of the inter-industry composition of government purchases, we
assume that Ḡ is constant (unless otherwise noted).

After solving (see Appendix A.2) for the expected flow profits of a firm winning an R&D race,
πe(ω, t), using (12), we obtain the following expression for υe(ω, t):

υe(ω, t) =
κ

1+κL(t)[c(t) + Ḡ+ γΓ]
r(t) + I(t)− ẋ(t)

x(t) − n
, (13)

where Γ ≡ ε2
(
1
/[

1− (1− κ)1/κ
]
− 1

)
> 0 and x(t) ≡ X(t)/L(t) is a measure of the rela-

tive, that is, population-adjusted, R&D difficulty. Because the RHS of (13) does not contain any
industry-specific variables, υe(ω, t) = υe(t) is the average market valuation of a successful innova-
tion in the economy. In (13), the effect of “creative destruction” is revealed; the more research that
occurs in an industry, the shorter, ceteris paribus, the duration of the accruing monopoly profits
is and the smaller the incentives to innovate are. By subtracting the rate of population growth, n,
in the denominator of (13), we also take into account that aggregate consumer markets, and thus,

3 Because there is a continuum of industries indexed on the unit interval, average values in the model equal total
values.
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profits earned by a successful innovator increase with a growing population.
Equation (13) already highlights the market size effect in innovation: the greater Ḡ is, that is,

the larger the government market is for a new product, the more profitable it is to be the producer of
that good. Another important implication of (13) is that the profitability of a successful innovation
increases in γ. In other words, it is not only the size of government demand that matters for the
valuation of a successful innovator, but also how government expenditures are distributed across
industries. Specifically, the more heavily the government promotes industries with relatively high
quality jumps, the more attractive an innovation becomes on average. However, although there is
a positive effect of the market size on the expected firm value, it is still not clear whether there will
also be more research effort to acquire this position. As we will show below, an increase in the size
of the government market that affects all industries symmetrically will not stimulate additional
R&D in this economy.

To see this, we derive the R&D equilibrium condition from the condition for profit maximization
in R&D and (13) as:

x(t)
A

=
κ

1+κ

[
c(t) + Ḡ+ γΓ

]
r(t) + I(t)− ẋ(t)

x(t) − n
, (14)

while the resource constraint of the economy (see Appendix A.3) reads:

1 = c(t) + Ḡ− γκΓ
1 + κ

+ I(t)x(t)
A

. (15)

The labor-market equilibrium in (15) holds for all t in and outside the equilibrium because
factor markets clear instantaneously.

The balanced growth path of the economy (see Appendix A.4) is characterized by all endogenous
variables growing at a constant (although not necessarily at the same) rate and a common research
intensity, I(t), across industries. According to (7), the constant growth rate of the R&D difficulty
constrains I to be constant over time and equal to I∗ = n/µ. For that reason, ẋ/x = ċ/c = 0
is implied by (15). Then, r(t) = ρ prevails by (4), meaning that in the steady state the market
interest rate must equal the rate of time preference.

Using these results, as well as (7) and (29), the amount of labor devoted to R&D in the steady
state can be derived as:

(
LI
L

)∗
= κn (1 + γΓ)
n (1 + κ− µ) + µρ

. (16)

The positive relationship between firms’ R&D activities and γ established in this equation is
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the main result of the model. An increase in γ, the parameter that determines to what extent
procurement takes place in industries with above-average quality jumps relative to the remaining
industries, instantly raises the expected value of becoming a quality leader [see (13)]. Firms respond
by investing more heavily in R&D, so the equilibrium value of the average (and aggregate) R&D
employment share increases. Consequently, by varying the composition of its purchases in favor of
industries with above-average innovative potential, the government holds a leverage to stimulate
private R&D spending.4

The steady-state level of labor employed in R&D activities is not affected by the volume of
per capita government demand expenditures, Ḡ. This result occurs because when the government
increases its demand spending, it takes away resources from the private sector. From (30) it
can be shown that procurement reduces private consumption in equilibrium one-for-one, that is,
dc∗/dḠ = −1. Therefore, a symmetric increase in government procurement spending that equally
affects all industries does not stimulate additional R&D in the economy. Equation (16) indicates
a number of further determinants of the equilibrium share of R&D employment. First, it can be
easily shown that the growth in the total market size, n, positively affects R&D labor. Moreover,
the larger the average size of innovations, that is, the greater κ, and therefore the higher the
limit price that a successful innovator can charge, the more that is spent in relative terms on
R&D. Finally, equation (16) indicates that investment in R&D is also affected by the technological
research opportunities, µ. The smaller µ is, the better the technological research opportunities are
[see (8)], and, because (ρ− n) > 05, the higher the equilibrium R&D employment is.6

3 Empirical Specification and Estimation Issues

The theoretical investigation of the industry-level effects of government purchases laid out a po-
tential mechanism through which public demand spending might affect innovative behavior in
industries and, with it, the rates of technological change and economic growth. The basis for the
empirical analysis is the result that the inter-industry composition of public demand influences
private R&D employment. According to (16), a shift in the structure of government purchases
toward industries with an above-average innovation potential stimulates company R&D employ-
4 Notice that the positive influence of γ on the R&D labor share, LI(t)/L(t), also holds outside the steady state.

From the resource constraint (15), it follows that LI(t)/L(t) = 1−
[
c(t) + Ḡ− γκΓ

]
/ (1 + κ).

5 This parameter restriction is needed to ensure the convergence of the utility integral in (1).
6 The working paper version of the model (Wiederhold, 2009) presented another prediction of the model, namely

that government procurement focused on high-tech industries may also yield beyond some point a negative
intertemporal R&D spillover effect (see also Aghion and Howitt, 1992). This effect takes the form of the depletion
of the technological opportunities in subsequent periods in a given industry. Thus, procurement expenditures in
high-opportunity industries are subject to dynamic diminishing returns for economic growth and social welfare.
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ment in the economy. This is due to a market size effect of government procurement in these
industries, which raises the returns of successful R&D activities and creates incentives for firms
to privately invest in R&D in these industries. The economy-wide amount of private R&D labor
increases because technological improvements and the R&D intensity in these industries are higher
than the economy-wide average. The implications of the theoretical model are tested at the level
of U.S. states. The U.S. is a particularly interesting country to study because the U.S. government
is the world’s largest purchaser of products and services. Moreover, the U.S. provides detailed
procurement data that allow both to determine the value of procurement contracts and to identify
to which industries public purchases can be assigned.

The impact of the composition of government sales on private R&D employment can be empir-
ically assessed by considering (16). Adding other potential determinants, state and time effects,
and log-transforming, equation (16) yields the following empirical model:

logR&D−EMPLOYMENTi,t = β1 logHIGH−TECH−SHAREi,t−1+
+β2X i,t + ξi + νt + ui,t

(17)

where R&D−EMPLOYMENTi,t denotes the number of hours worked in R&D occupations
in state i at time t. HIGH−TECH−SHAREi,t−1 is the empirical approximation of γ from our
theoretical model. This variable measures the technological intensity of procurement, defined as
federal procurement in high-tech industries as a share of total federal procurement in state i at
time t−1. To construct HIGH−TECH−SHAREi,t−1, we exclude government outlays to procure
research results (R&D procurement).7 The procurement high-tech share is lagged by one period
to account for the fact that procurement contracts appear in our data with the date of contract
signature while the effective starting date might be later. Moreover, company R&D investment
might respond to federal procurement contracts only with a certain lag. A third reason for lagging
the technological intensity of procurement is to overcome any reverse causality problems, that is,
company R&D funding affecting public procurement.8

The vector X i,t contains several control variables. For instance, our model suggests that the
size of the market influences private R&D. To proxy for market size, we use the level of the GDP,
the population, or the GDP per capita (Moser, 2005; Sokoloff, 1988). Moreover, we control for the
total number of hours worked within a state and the state-wide hourly wage of R&D workers.9 ξi
7 See Section 4.1 for more details on the distinction between R&D and non-R&D procurement and the reasons to

exclude the former when constructing HIGH−TECH−SHAREi,t−1.
8 However, it has little impact on our results whether we use the lagged or the contemporaneous procurement

high-tech share.
9 In fact, the theoretical model would suggest to use the hours worked in R&D divided by total hours worked as
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and νt are vectors of state and year fixed effects, respectively. The state fixed effects, ξi, account
for all kinds of unobserved time-invariant state-specific factors that might influence private R&D
decisions. Likewise, νt captures the aggregate, macroeconomic factors, such as business cycles,
demand shocks, or national policy changes. Accounting for time fixed effects is inevitable in our
case because the relevant market for R&D performing companies typically extends well beyond
the states in which their R&D is located. The year dummies will pick up the effects of demand
when that demand reflects national or global market conditions. Moreover, the year dummies also
account for the portion of technological opportunities (µ in the theoretical model) that is common
to all states. Omitting the state and time fixed effects in the regression will cause biased estimates
if these are correlated with any of the regressors. The error term is denoted by ui,t.

Despite controlling for state and time fixed effects, the error terms within units may still be
correlated over time. In the presence of serial correlation, the OLS estimator will be inefficient if
the unobserved factors that cause the within-state correlation of the residuals are uncorrelated with
the included regressors; otherwise, the OLS estimator will also be biased. To address the serial
correlation concerns, we cluster standard errors by state (Arellano, 1987; Hansen, 2007; White,
1980).10

Moreover, it could be objected that drawing causal inferences from (17) about the effect of
government procurement composition on private R&D is not foolproof. Specifically, there might
be omitted variables that are correlated with both private R&D employment and government
procurement or even jointly determine them. For instance, federal procurement contracts might
be contingent on certain firm characteristics, such as lobbying activities or management quality,
that are also systematically related to firm R&D. In other cases, high-tech industry procurement
may be used strategically as a policy means to stimulate the local economy. Hence, the estimates
of the impact of government procurement on company R&D employment might be biased while
the direction of the bias is not clear. Our strategy for dealing with the various sources of estimation
bias is to apply an IV approach. The instrument is discussed in Section 5.3. Before turning to the
empirical analysis, we first introduce the data and variables.

the dependent variable. We prefer to control for total hours worked, however, to be able to express our outcome
variable as an absolute value instead of a share. We show in Table A.4 that all results are robust to defining the
outcome variable as the proportion of hours worked in R&D.

10 If both, the AR(1) model for serial correlation and strict exogeneity hold, the FGLS estimator using the Prais-
Winsten transformation is asymptotically more efficient than the OLS estimator (Wooldridge, 2002b). However,
when T is small and strict exogeneity does not hold, FGLS tends to exacerbate the bias (Wooldridge, 2002a).
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4 Data and Variable Construction

4.1 Federal Non-R&D Procurement

Our information on government purchases by state and industry is derived from administrative
records of the U.S. government. The data stem from the Federal Procurement Data System – Next
Generation (FPDS-NG), provided by the General Services Administration (GSA). Federal agencies
are required by the Federal Acquisition Regulation to report all contract actions of more than $2,500
directly to the FPDS-NG. Procurement conducted by state governments and other local public
agencies is not included in the data.11 FPDS-NG reports the federal contracts for each company
that is a separate legal entity, independent of the parent company (Goldman, Rocholl and So,
2008). The information provided contains, inter alia, the contract volume, award and completion
dates, place of performance, whether a contract is primarily for R&D, Federal Product and Service
Code (PSC), and, since 2001, the industry (NAICS) to which a contract can be assigned. The
FPDS-NG database contains records of more than 32 million contract actions between 1978 and
2009.

To construct the procurement high-tech share, we use only federal non-R&D procurement.
Federal R&D procurement reflects the government demand for completely new products, processes,
or systems, which essentially means that firms conduct R&D by the order of the government
(David, Hall and Toole, 2000). Therefore, one would expect R&D procurement to directly affect
private R&D outlays, while we are interested in the (indirect) effect of government market size
on company R&D. Moreover, it has been suggested that R&D procurement is often idiosyncratic,
and the results of federally funded research are only applicable to the private market to a limited
degree (Kanz, 1993; Lichtenberg, 1989). For these reasons, R&D procurement is less suited to
capture the market-size effect of public procurement on private R&D decisions suggested by our
theoretical model.12 One should notice, however, that non-R&D procurement might also contain a

11 It could be objected that by looking only at federal procurement we leave out an important part of general public
procurement. The OECD estimates that, in the U.S., the volume of procurement by state and other local agencies
is almost twice the volume of federal procurement (Audet, 2002). In particular, the omission of state and local
level procurement is problematic if there are systematic differences in the content of procurement by federal and
sub-national procurement agencies, for example, with respect to the technological composition of procurement.
However, there is no immediate reason to believe that procurement by federal and sub-national agencies differ
from each other (see, e.g., Coggburn, 2003). Moreover, to the best of our knowledge, sub-national procurement
entities do not provide data at a level of detail necessary for our analysis. However, federal procurement has
the important advantage to be rather independent of state-level characteristics, thereby reducing the problem
of endogeneity discussed in Section 3.

12 All regression results are robust to the inclusion of the value of R&D procurement contracts as an additional
control. However, we decided against controlling for R&D procurement in our main specification because we lack
an appropriate instrument to address the endogeneity concerns associated with R&D procurement (Lichtenberg,
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R&D component. Unfortunately, the FPDS-NG data do not allow us to discern the R&D portion
of non-R&D contracts. However, the primary objective of non-R&D contracts is not to conduct
research on behalf of the government (GSA, 2005). Moreover, R&D performed under federal non-
R&D contracts is much more likely to also have applications to the private market (Lichtenberg,
1990), thereby creating additional incentives for private investment in R&D.

We classify procurement expenditures according to the date of the contract signature. More-
over, we use the gross contract value, that is, the number of dollars initially obligated by the action.
De-obligations are not subtracted because they are typically not foreseeable at the date of the con-
tract signature and, thus, are not factored in by firms in their R&D decisions. However, by not
accounting for de-obligations, we implicitly assume that the cancellation, downward adjustment,
or deletion of a previously recorded obligation does not affect private R&D decisions.

Testing our model’s implications requires identifying procurement in industries with above- and
below average quality jumps, respectively. Closest to the theoretical model would be an industry
classification according to the average quality jump, measured, for instance, by the average markup
of price over marginal cost. However, to the best of our knowledge, estimates of markups for U.S.
industries are available only at the 2-digit NAICS level (e.g., Diewert and Fox, 2008; Hall, 1988;
Oliveira Martins, Scarpetta and Pilat, 1996; Roeger, 1995), which is too broad to meaningfully
distinguish industries with respect to their innovation capacity. Thus, for the purposes of the
empirical study, we approximate industries in which quality jumps above the economy-wide average
by high-tech industries.13

To identify high-tech industries, we refer to the industrial classification provided by the Bureau
of Labor Statistics (BLS). The BLS classifies industries as high-tech if the percentage of science,
engineering, and technical occupations in total employment exceeds the average for all industries
at least by a factor of five (Hecker, 2005).14 According to this definition, we classify the following
industries as high-tech: Pharmaceutical and medicine manufacturing (NAICS 3254), Computer
and peripheral equipment manufacturing (NAICS 3341), Communications equipment manufactur-
ing (NAICS 3342), Semiconductor and other electronic component manufacturing (NAICS 3344),

1988).
13 Cozzi and Impullitti (2010) also interpret industries with above-average quality jumps as being high-tech indus-

tries.
14 An alternative classification of high-tech industries, relying on industrial R&D spending, is provided by the

Bureau of Economic Analysis in its R&D Satellite Account (Fraumeni and Okubo, 2005). The R&D Satellite
Account data are based on the industry-level R&D series collected by the National Science Foundation. However,
we do not use this classification because, due to a mistake in the classification methodology, a large part of
R&D before 2004 was erroneously attributed to the wholesale trade industry. In reality, this R&D was mostly
performed in pharmaceutical and computer manufacturing companies. Despite the fact that since 2004 the NSF
has released a revised industry classification, the BEA still uses the unrevised methodology (NSF, 2007; Robbins
et al., 2007).
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Navigational, measuring, electro-medical, and control instruments manufacturing (NAICS 3345),
Aerospace product and parts manufacturing (NAICS 3364), Software publishers (NAICS 5512),
Internet publishing and broadcasting (NAICS 5161), Other telecommunications (NAICS 5179),
Internet service providers and Web search portals (NAICS 5181), Data processing, hosting, and re-
lated services (NAICS 5182), Architectural, engineering, and related services (NAICS 5413), Com-
puter systems design and related services (NAICS 5415), and Scientific research-and-development
services (NAICS 5417).

Prior to 2001, the FPDS-NG data contain mainly PSC information, while industry information
(NAICS) is only scarcely reported. However, since 2001 the FPDS-NG procurement data contain
information on both the PSC and NAICS codes for almost all contracts. We develop a PSC-NAICS
concordance based on contract data during the period from 2001 to 2009 for which both the PSC
and NAICS were available to assign NAICS codes to contracts with missing industry classification
(see Appendix A.5). We use the original NAICS codes and the concordance (if the NAICS code was
missing) to classify industries as either high-tech or all other. Finally, we exclude federal purchases
from public-sector firms (NAICS 92) from the sample and aggregate the remaining procurement
contracts to the state level. We construct the high-tech share, as a measure of the technological
content of procurement, as the proportion of procurement in high-tech industries.

4.2 Private R&D Employment and Wages

To proxy R&D labor in the private sector, we draw on the Current Population Survey May Out-
going Rotation Group (May/ORG). The survey is conducted by the U.S. Census Bureau on behalf
of the BLS on a monthly basis (BLS, 2011; Bowler and Morisi, 2006). The interviewed households
are a scientifically selected sample designed to represent the civilian noninstitutional population.
The sample is designed to provide reliable estimates for the U.S. as a whole as well as for the 50
U.S. states and the District of Columbia. It currently includes about 60,000 households. The CPS
contains data on various labor force characteristics, such as information about employment status,
earnings, hours of work, etc. In addition to that, the CPS collects educational attainment data
and a variety of demo-graphic characteristics such as age, sex, race/ethnicity, and marital status.

Following Autor, Katz and Kearney (2008) and Acemoglu and Autor (Forthcoming), we con-
struct our proxy for R&D labor using hours worked in the CPS sample reference week by wage
or salary workers (both, part-time and full-time) in the age group 16 to 64.15 We measure R&D

15 Alternatively, data on hours worked per week can be obtained from the March CPS. However, March CPS
samples rely on retrospective answers by the respondents, while CPS/ORG data provide point-in-time measures
of hours worked in the week before the survey. For that reason, May/ORG is typically preferred to the March
CPS (Autor, Levy and Murnane, 2003; Autor, Katz and Kearney, 2008; Lemieux, 2006).
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employment as the state-level sum of weekly hours worked in R&D occupations in private-sector
firms, excluding employment in the public sector, self-employment, and jobs without payment.
Hourly wages are calculated as the reported hourly earnings for those paid by the hour and the
usual weekly earnings divided by hours worked last week for non-hourly workers. All calculations
are weighted by CPS sampling weights.16 To identify R&D occupations, we exploit information on
detailed occupations in the May/ORG. Occupations are classified as R&D-oriented according to
the job descriptions in the Occupational Employment Statistics: Dictionary of Occupations (BLS,
2004).17

It is important to note that information in the May/ORG is coded at the place of residence of
the surveyed households, while information in the FPDS-NG is geo-coded at the location of the
establishment. If there is a substantial amount of employees in the CPS whose working place is in
a different state than their home, our analysis will be prone to measurement error. However, the
sampling design of the CPS ensures that this is unlikely to be the case. The selection of sample
areas in the CPS is based on U.S. labor market areas, so-called Metropolitan Statistical Areas
(MSA).18 Households in the CPS are selected from those MSA that do not cross state borders
(BLS, 2011). For this reason, we are confident that the CPS survey respondents rarely show cross-
state commuting behavior, which attenuates the problem of different reporting units of the CPS
and the FPDS-NG data.

4.3 Population and GDP

Population data are taken from midyear estimates reported by the Bureau of Economic Analysis
(BEA). Data on the GDP are also obtained from the BEA, deflated by the GDP deflator.19 Our
final dataset covers 50 U.S. states in the period from 1997 to 2009.

5 Empirical Results

This section reports our empirical findings. We first show how the technological composition of
public procurement is related to company R&D employment in the pooled cross section. We then
turn to panel estimations that control for time and state specific effects and check the sensitivity
16 The details of the construction of the labor supply and wage variables are delegated to Appendix A.5.
17 Our classification of R&D occupations is consistent with, but somewhat more precise, than the definition of

technology-oriented workers in Hecker (2005). See Table A.1 for an overview of R&D occupations.
18 An MSA consists of an urban core plus surrounding territory that is socio-economically linked to the urban core

by commuting. See http://www.census.gov/population/www/metroareas/metroarea.html for more details.
19 Because the deflator is the same for all states in a given year, it is absorbed by the year dummies in the regressions

below.
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of our results to various changes in the baseline specification. We close with considering IV
estimations to examine the unbiased causal effect of the technological intensity of government
procurement on firms’ R&D employment decisions.

5.1 Basic Specifications

We begin our empirical investigation by looking at the simple cross-sectional association between
the technological intensity of government demand and private R&D. In Figure 1, the procurement
high-tech share is plotted against private R&D employment for years from 1997 to 2009 in a
pooled cross section. Because the theoretical model’s econometric representation in equation (17)
is in log-linear terms, the variables are measured in logs. Moreover, for the reasons explained
in Section 3, we lag the procurement high-tech share by one year. As indicated by the fitted
line, the technological intensity of procurement and privately funded company R&D are positively
associated. The correlation between the two variables is equal to 0.43. Below, we more rigorously
examine this relationship by controlling for unobserved time-invariant state characteristics and a
number of other factors.
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Figure 1: Technological intensity of government demand and private R&D: Pooled cross section.
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Notes: R&D employment is measured as the number of weekly working hours in R&D occupations. High-tech share
is federal non-R&D procurement in high-tech industries as a share of total federal non-R&D procurement. The
share variable is lagged by one year. The period of observation is 1997-2009.

Now, we present the results from the OLS estimation of the impact of a reallocation of govern-
ment purchases in favor of high-tech industries on company R&D employment. Here, identification
comes from the within-state (over-time) variation of the variables. The results from the OLS es-
timation of equation (17) are reported in Table 1. All models in the remainder of this paper are
estimated using cluster robust standard errors, where each state forms one cluster. All variables
are measured in natural logs; thus, the coefficients are to be interpreted as elasticities.20

The estimation results support the predictions of the theoretical model. In Column (1), we
find a positive and statistically significant relationship between the technological intensity of public
purchases and private R&D employment. The coefficient, significant at the 1 percent level, shows
that a doubling of the procurement high-tech share is associated with a 2.6 percent increase in the
weekly working hours of R&D personnel. Evaluated at the respective sample means, our results

20 Summary statistics and pairwise correlation coefficients of the variables are reported in Tables A.2 and A.3.
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imply that if the procurement high-tech share increased from 33 to 66 percent, company R&D
employment in the state would rise by approximately 117,000 hours. Put differently, if the high-
tech share increased by one standard deviation, private R&D employment would grow by 1.55
percent of a standard deviation. The total size of the market demand, measured as the level of
the GDP, is negatively related to private R&D activities and marginally significant. This result
appears counterintuitive at first and is, in fact, at odds with the theoretical predictions. However,
a likely reason for the negative coefficient on the GDP is that the GDP and total hours worked
are highly correlated.21 Unsurprisingly, total hours worked and hourly wage in R&D occupations
are positively associated with hours worked in R&D.

The described pattern remains when using the population (Column (2)) or the GDP per capita
(Column (3)) as alternative proxies for total market size. In all specifications, the procurement
high-tech share is highly significant and its point estimate is almost unchanged.22 Further, in
Column (4) we show that it is indeed the positive effect of procurement in high-tech industries
that drives our results; procurement in high-tech industries and private R&D employment show
a significantly positive association, while procurement in the remaining industries fails to capture
statistical significance.23

21 In regressions without hours worked, the point estimate on GDP is positive but marginally insignificant.
22 When estimated without hours worked, both the population and the GDP per capita yield positive yet insignif-

icant effects on private R&D.
23 The results are virtually identical for the GDP or the population as controls for total market size.
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Table 1: Technological intensity of government demand and private R&D: OLS results.

Dependent Variable:
R&D Employment (log)

(1) (2) (3) (4)

High-Tech Share (log, t-1) 0.026∗∗∗ 0.025∗∗∗ 0.027∗∗∗
(0.009) (0.009) (0.009)

Procurement High-Tech (log, t-1) 0.022∗∗∗
(0.007)

Procurement All Other (log, t-1) - 0.003
(0.012)

GDP (log) -0.142∗
(0.075)

Population (log) -0.225∗
(0.130)

GDP Per Capita (log) -0.048 -0.048
(0.086) (0.087)

Total Hours Worked (log) 0.514∗∗∗ 0.509∗∗∗ 0.425∗∗∗ 0.424∗∗∗
(0.076) (0.111) (0.073) (0.070)

Hourly Wage R&D (log) 0.760∗∗∗ 0.763∗∗∗ 0.761∗∗∗ 0.763∗∗∗
(0.028) (0.029) (0.028) (0.029)

State Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes

Observations 650 650 650 650
R-squared (overall) 0.995 0.995 0.994 0.994
R-squared (within state) 0.783 0.783 0.782 0.782
F -statistic 261.678 271.371 269.660 233.750

Notes: Results of the OLS estimation of equation (17). The dependent variable is private R&D employment,
measured as weekly working hours of employees in R&D occupations (see Section 4). The sample includes 650
observations from 50 states over the period from 1997 to 2009. All variables are log-transformed. High-tech share
measures the technological intensity of public purchases. It is defined as federal non-R&D procurement in high-tech
industries divided by total federal non-R&D procurement. Gross procurement values are used, that is, de-obligations
are not subtracted. High-tech share is lagged by one period, while all control variables are contemporaneous. Total
hours worked is measured as the number of weekly hours worked in all occupations. Hourly wage R&D is the
state-level sum of per-hour wages earned by workers in R&D occupations. All estimations include year and state
fixed effects. Robust standard errors (clustered by state) are in parentheses. * 10 percent level of significance. **
5 percent level of significance. *** 1 percent level of significance.
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5.2 Robustness Tests

Table 2 investigates the robustness of the findings of the baseline specification (Section 5.1). In
the remainder of the section, we use the GDP per capita to capture market size because it has
the lowest correlation with total hours worked among our various proxies for market size.24 First,
to partly alleviate concerns about the endogeneity of our estimates, we include state-specific time
trends, in addition to year and state fixed effects (Column (1)). This specification remedies an
omitted variable bias caused by slow-moving R&D employment trends in each state, which, if not
properly controlled for, would confound the estimates of the within-state effects (Friedberg, 1998;
Kerr and Nanda, 2009). Even in this demanding specification with additional 50 state time trends,
the results continue to support our theoretical conjecture that a reshuffling of public purchases in
favor of high-tech industries is associated with an increase in company R&D employment.

In Columns (2) and (3), we test whether the results are sensitive to our measurement of
government procurement. In Column (2), we use the net value of the federal non-R&D procurement
(dollars de-obligated are subtracted from the dollars originally obligated by a contract) to construct
our measure for the technological intensity of procurement. In Column (3), we only consider those
procurement contracts for which NAICS information was originally available in the FPDS-NG
database, not applying the PSC-NAICS concordances to assign missing industry codes (NAICS)
to procurement contracts. The findings are robust to those changes in measuring procurement.
However, the coefficient on the high-tech share of procurement somewhat decreases in size in the
specification with original NAICS codes. This result reflects the fact that prior to 2001 it is
often not possible to identify to which industries public purchases can be assigned, as only little
information on the NAICS codes is available in the FPDS-NG data. Thus, effectively, our period
of observation shrinks to 2001-2009 in this specification.

One possible source of estimation bias are changes in the within-state industry structure. For
instance, the observed positive correlation between high-tech procurement and private R&D em-
ployment may simply be an artifact of an increase in the number of firms in high-tech industries
in a state. More firms in high-tech industries implies both, more potential contractors for the
federal government, potentially leading to an increase in high-tech procurement, and more R&D
employment. In Column (4), we address this concern by accounting for the industry-level variation
in the GDP within states. The GDP data for 20 industries, approximately at the 2-digit level,
are taken from the BEA. The coefficient on the technological intensity of government procurement
remains virtually identical to the baseline result.
24 The GDP per capita is insignificant in all specifications. We obtain qualitatively similar results when the GDP

or the population are included in the regressions instead of the GDP per capita. Moreover, total hours worked
and hourly wage in R&D occupations are positive and highly significant in all models.
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Next, we check whether our results are robust to changes in the construction of the dependent
variable. In Column (5), we restrict our sample to full-time employees in R&D occupations, that
is, employees who work more than 35 hours per week. We obtain roughly similar results as those in
the baseline specification, although the size of the coefficient on the procurement high-tech share
somewhat shrinks.

In Column (6), we test whether the basic state-year outcomes are robust to excluding potentially
influential states (Kerr and Nanda, 2009). More concretely, we estimate equation (17) for the
sample without large states. Following Elis, Malhotra and Meredith (2009), we define large states
as those with at least 15 representatives in every Congress since the 1970 apportionment. These
states are California, Florida, Illinois, Michigan, New York, Ohio, Pennsylvania, and Texas. Also
with this restricted sample our results continue to hold.

Finally, in Column (7), we use an alternative measure of the technological intensity of procure-
ment, calculated as the ratio between federal procurement in high-tech industries and in all other
industries. Here, the estimates imply that a doubling of the procurement high-tech ratio, that is, a
doubling of government purchases in high-tech industries relative to purchases in other industries,
is associated with an increase in weekly hours worked in R&D of approximately 1.8 percent. In
terms of magnitude, an increase in the procurement high-tech ratio of one standard deviation is
associated with an increase in private R&D employment of 1.7 percent of a standard deviation.

Overall, the robustness analysis confirms the findings from the baseline estimation. The positive
association between the technological content of public purchases and private R&D employment
continues to hold when a linear state time trend is included, when the variables of interest are
differently constructed, or when the local industry structure is explicitly controlled for. Moreover,
we also perform the analysis using the R&D employment share as outcome variable, measured as
the proportion of weekly hours of R&D workers in total weekly hours worked. Table A.4 shows
that all above results are robust to this change in the dependent variable.

5.3 Instrumental-Variable Approach

Causal interpretation of the associations reported so far, albeit proving robust under a range of
alternative specifications, is apparently hindered by a range of endogeneity concerns. As discussed
in Section 3, there might be unobserved factors at the state level not accounted for by the year
and state dummies that are correlated with federal procurement or even jointly determine federal
procurement and company R&D employment. These omitted variables are a potential source
of endogeneity concerns, biasing the OLS estimator in an unknown direction. Moreover, reverse
causality might arise if the government perceives a firm’s R&D efforts as a signal of its capabilities
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to perform a procurement contract (Lichtenberg, 1988). Such “signaling R&D” would bias our
OLS estimates upwards if it primarily occurred in high-tech industries, that is, the award of high-
tech procurement contracts is particularly strongly influenced by the firm’s R&D performance.
We address these endogeneity concerns in an IV approach, using an instrument that captures an
exogenous part of the variation in the technological content of federal purchases across states and
over time.

Our instrument relies on the idea that politicians can influence the distribution of high-tech
procurement across states and over time. In particular, we argue that if the party holding control
of the governorship in a state also has a majority in the Congress, the state receives more, and in
particular high-tech, procurement contracts. The assumption underlying our instrument is that
politicians channel federal procurement to their constituency in order to “reward” supporters for
their votes and to increase their electoral fortune in future elections (Arnold, 1979; Levitt and
Snyder, 1997; Shepsle and Weingast, 1981; Stein and Bickers, 1994). As it is generally difficult to
deliver direct monetary payback, politicians divert specific investments or procurement contracts
to their states (Aghion et al., 2009; Atlas et al., 1995; Cohen and Noll, 1991; Levitt and Snyder,
1997; Mayer, 1995). For instance, there is anecdotal evidence of intervention by members of the
House of Representatives to prevent the Department of Defense or the Pentagon from taking away
military procurement projects from their constituency (Hoover and Pecorino, 2005). Newspaper
accounts also sometimes refer to government procurement as pork barrel spending (e.g., Wheeler,
2004).

However, not all types of procurement spending are equally likely to be strategically distributed
to states in the pursuit of political gain. Voters make decisions on the basis of judgments about
politicians’ contribution to the economy (Arnold, 1979). In this respect, allocating federal pro-
curement to local high-tech industries is likely yielding higher electoral benefits than other types
of procurement because promoting high-tech industries is typically assumed to be a promising
measure to stimulate the local economy (that is, to secure and/or create jobs, to raise innovative-
ness and long-term international competitiveness, etc.). Moreover, politicians may tend to support
rather risky, technology-intensive procurement projects (Cohen and Noll, 1991). Such high-tech
projects usually receive much public attention and are therefore beneficial for the politician’s pres-
tige (for a related argument, see Steinberg, 1995).

To channel (high-tech) federal procurement to his state, a governor needs “support” from the
Congress, that is, either from the House of Representatives, the Senate, or both. According to
Article I of the U.S. Constitution, the Congress holds the “power of the purse” and is the main
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locus of the “distributive game.”25 The majority party in either chamber of the Congress is entitled
to significant agenda control power because it selects the chairmen of committees authorizing and
appropriating funds. In fact, the leading party receives a majority on all of the Appropriations
subcommittees (Evans, 1991; Fenno, 1973).26 The party that constitutes a majority in the House
or Senate has an incentive to support governors of the same party by means of allocating federal
procurement contracts to firms in the respective state because, following Grossman (1994) and Shor
(2005), the party caucus represents a coalition that provides selective benefits to its members. State
politicians, in return, invest their political capital to support (the re-election of) the Congressmen
in their states.

A number of previous studies provide evidence for policy-related determinants of the distribu-
tion of federal spending. Using Indian data, Dasgupta, Dhillon and Dutta (2004) find that states
governed by the party that also controls the central government receive more grants. The authors
argue that the allocation of federal funds to a governor of the opponent party can generate a
“leakage” effect and losses of some of the benefit from spending. In the same vein, Martin (2003)
suggests that politicians allocate federal spending strategically to the areas providing them the
highest returns on their “investments.” Balla et al. (2002), in a study of academic earmarks, re-
port that districts represented by majority party House members receive higher funds than those
represented by the minority. Alvarez and Saving (1997) generalize this finding to other types of
federal funds. Levitt and Snyder (1995) study federal assistance programs in the period from 1984
to 1990 and find that a Democratic majority in Congress is associated with higher spending for
districts mainly populated by Democratic voters.

For the purpose of the empirical analysis, we construct our instrument as a dichotomous variable
that takes the value of 1 in states whose governors are affiliated with the majority party in the
House and 0 otherwise.27 The instrument is lagged by two years behind the endogenous regressor
to account for the lag in the budget cycle. Current federal procurement budgets have normally

25 The president might also play an important role both in the budget process and as chief executive (Larcinese,
Rizzo and Testa, 2006).

26 Aghion et al. (2009) provide evidence that House and Senate appropriation committees affect the geographic
distribution of educational spending.

27 As mentioned above, the Congress consists of two chambers, that is, the House and Senate. The House majority
was Democratic in years 1994 to 1995, and Republican in the period thereafter (notice that due to the lag
structure we choose for the instrument, which is explained below, our instrument covers the period 1994 to
2006). In principle, the majority party in the Senate has been the same as in the House; only in years 2001
to 2002, Democrats and Republicans provided the same number of Senators. However, according to the U.S.
Constitution, the Vice President breaks a tied vote in the Senate. Because the Republican Dick Cheney assumed
the position of Vice President from 2001 to 2008, one might regard the Senate as being under the same leadership
as the House in our period of observation. In this case, the coincidence of the governor’s party and the Senate
majority delivers exactly the same results as those reported below.
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been appropriated in previous budgetary years (Alvarez and Saving, 1997; Elis, Malhotra and
Meredith, 2009; Larcinese, Rizzo and Testa, 2006).28 Figure A.1 provides an impression of the
relationship between the instrument and the high-tech share of federal procurement.

The variation in our instrument comes from two sources, namely, House and governor elections.
The identifying assumption of our IV model is that the coincidence of the majority parties at the
state and federal level is uncorrelated with changes in the R&D prospects in the state except for
the possible indirect effect through the procurement high-tech share. It could be objected that
the outcome of gubernatorial elections might be related to state-specific characteristics that also
determine private R&D investment. However, the outcome of a Congressional election is exogenous
to specific states, and our instrument indicates the party coincidence at the state and federal levels.
Moreover, the timing of House and gubernatorial elections is exogenously given. Hence, we are
confident that our instrument is unrelated to state-specific characteristics that are correlated with
company R&D.

We motivated our instrument by assuming that it is particularly attractive for politicians to
deliver high-tech procurement to their constituents. Thus, we expect federal procurement in high-
tech industries to be relatively high (compared with procurement in other industries) in states
whose governors belong to the party holding the majority in the House. In Table 3, we provide
evidence in favor of this assumption. Here, we separately regress our instrument on the level of
high-tech procurement and all other procurement, respectively. The results indicate that states
with a governor affiliated with the majority party in the House receive relatively more high-tech
industry procurement (Column (1)). The amount of other types of procurement, however, seems
to be unaffected by the coincidence of the governor’s party and the majority in the House (Column
(2)).

28 We also experimented with different lag structures, which provided results qualitatively similar to those reported
below. First- and second-stage IV results with the instrument being lagged one year behind the procurement
high-tech share are shown in Table A.5.

28



Table 3: The effect of governor-House majority alignment on the geographic distribution of federal
procurement by procurement type.

(1) (2)
High-Tech All Other
Industries Industries

Coincidence Gov-House (t-2) 0.157∗∗ -0.035
(0.065) (0.034)

GDP Per Capita (log) 0.328 0.022
(0.701) (0.340)

Total Hours Worked (log) -0.853 0.101
(0.810) (0.405)

Hourly Wage R&D (log) -0.083 -0.135
(0.162) (0.095)

Time fixed effects Yes Yes
State fixed effects Yes Yes

Observations 650 650
R-squared (overall) 0.305 0.100
R-squared (within state) 0.574 0.810
F -statistic 33.098 82.881

Notes: This table provides the OLS results of regressing our instrument, Coincidence Gov-House, on federal non-
R&D procurement in high-tech and all other industries, respectively. The instrument is a binary variable taking the
value of 1 if a state governor belongs to the majority party in the House and 0 otherwise. The instrument is lagged
by two periods to take into account delays between the appropriation of federal funds and the moment when these
are actually spent. Robust standard errors (clustered by state) in parentheses. * 10 percent level of significance.
** 5 percent level of significance. *** 1 percent level of significance.

The IV models are presented in Table 4. First, we report the results of the two-stage least
squares (2SLS) estimator. The first stage, shown in Column (1), indicates that the instrument is
indeed a relevant predictor of the technological intensity of public purchases. States with a governor
being member of the majority party in the House experience an increase in the procurement
high-tech share of approximately 13 percent. The F -statistic of the excluded instrument equals
6.8, which suggests that the instrument has explanatory power for the potentially endogenous
regressor.29 None of the control variables enter the first-stage model significantly.

29 As discussed by Staiger and Stock (1997) and Stock, Wright and Yogo (2002) for a single endogenous regressor,
the F-statistic typically must exceed 10 for inferences based on the 2SLS estimator to be reliable. However,
this threshold value was derived for non-clustered standard errors. If we use Huber-White robust standard
errors instead of clustered standard errors, the first-stage F -statistic is 17.51, indicating that there is not a weak
instrument problem.
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The first-stage fitted values are then plugged into the second-stage equation as regressors to
obtain the causal effect of the technological intensity of procurement on private R&D. In Column
(2), we show that the estimated coefficient on the technological content of procurement is in line
with the OLS results in Table 1. The IV coefficient is positive and in the same order of magnitude
as the OLS estimate. At the same time, however, the coefficient on the procurement high-tech
share lacks significance, which is due to the relatively large standard error of the IV estimate. A
test for exogeneity, implemented through a Durbin-Wu-Hausman χ2 test, does clearly not reject the
null hypothesis of an exogenous regressor (p = 0.920). This finding suggests that there is no bias
from omitted variables or reverse causality in the OLS regressions, probably because there is not
a systematic relationship between the potential omitted variables and the procurement high-tech
share. Given this result and taking further into account that IV estimates are less efficient than
their OLS counterparts, we cautiously interpret the original uninstrumented estimates to show a
positive causal effect of the technological content of procurement on company R&D employment.

To be more confident that we do not suffer from a weak instrument problem, we also perform
a Limited Information Maximum Likelihood (LIML) estimation. LIML is preferred to 2SLS when
the instruments are weak (Hahn, Hausman and Kuersteiner, 2004).30 In Columns (3) and (4) in
Table 4, we report the estimates based on Fuller’s (1977) modification of the LIML estimator, which
ensures that the estimator has finite moments. The Fuller estimation delivers comparable results
to those of the 2SLS regressions, while the coefficient on the technological content of procurement
is somewhat more precisely estimated.

30 Weak instruments can lead to inconsistencies in the IV estimates and tend to exacerbate the finite-sample
bias that IV approaches suffer from (Bound, Jaeger and Baker, 1995; Nelson and Startz, 1990). Moreover, in
the presence of weak instruments, the conventional asymptotic approximations used for hypothesis tests and
confidence intervals are usually unreliable (Stock, Wright and Yogo, 2002; Temple and Wößmann, 2006).
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Table 4: Technological intensity of government demand and private R&D: IV estimates.

(1) (2) (3) (4)
2SLS 2SLS LIML LIML

First Stage Second Stage First Stage Second Stage

Coincidence Gov-House (t-3) 0.129∗∗ 0.129∗∗
(0.050) (0.050)

High-Tech Share (log, t-1) 0.022 0.022
(0.057) (0.054)

GDP Per Capita (log) -0.020 -0.049 -0.020 -0.049
(0.440) (0.087) (0.440) (0.087)

Total Hours Worked (log) 0.731 0.422∗∗∗ 0.731 0.422∗∗∗
(0.591) (0.084) (0.591) (0.083)

Hourly Wage R&D (log) - 0.028 0.760∗∗∗ -0.028 0.760∗∗∗
(0.131) (0.029) (0.131) (0.029)

Time Fixed Effects Yes Yes Yes Yes
State Fixed Effects Yes Yes Yes Yes

Observations 650 650 650 650
F -statistic (excluded instrument) 6.770 6.770
R-squared (within state) 0.056 0.180 0.056 0.188
F -statistic 1.620 276.233 1.620 276.643
Durbin-Wu-Hausman test p-value 0.920 0.921

Notes: Results from a 2SLS (Columns (1) and (2)) and LIML (Columns (3) and (4)) estimation of the effect of
the technological composition of government procurement on private R&D employment. The first-stage results are
presented in the odd columns, while the even columns contain the second-stage results. The instrument is a binary
variable taking the value of 1 if the state governor belongs to the majority party in the House and 0 otherwise. The
instrument is lagged two periods behind the potentially endogenous regressor to take into account delays between
the appropriation of federal funds and the moment when these funds are actually spent. In the LIML estimation,
the user-specified constant (alpha) is set to 1 (see Temple and Wößmann, 2006). Robust standard errors (clustered
by state) in parentheses. * 10 percent level of significance. ** 5 percent level of significance. *** 1 percent level of
significance.

6 Conclusions

The goal of this paper is to analyze the relationship between the inter-industry composition of
public purchases and firms’ R&D decisions both from a theoretical and an empirical perspective.
First, we develop a generalized version of a Schumpeterian growth model that incorporates a typical
trait of real economies, namely, the presence of industries characterized by different innovation sizes
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(Cozzi and Impullitti, 2010; Minniti, Parello and Segerstrom, 2008). According to the model, a
change in the composition of government purchases that relatively favors industries with above-
average quality jumps, that is, high-tech industries, stimulates private R&D activities at the level
of the economy. The intuition for this result is as follows: The government market is an additional
source of demand, raising the returns from successful R&D activities. Government demand in
industries with an above-average innovation potential increases the market size in these industries,
while R&D investment in all other industries becomes less attractive. At the economy-wide level,
however, the additional R&D induced in high-tech industries outweighs the R&D foregone in all
remaining industries; thus, total private R&D efforts increases.

We then compare the implications of the model with observable patterns, using U.S. state-level
panel data for the period 1997 to 2009. We exploit administrative procurement data that provide
detailed information on all federal procurement contracts above the micropurchase threshold. The
technological intensity of procurement is measured as the share of high-tech industry procurement
in total procurement. When constructing this measure, we only consider government contracts
that are not directly related to R&D work. Our indicator for company R&D is the supply of R&D
labor in the private sector, measured as weekly hours worked in R&D occupations. To overcome
potential bias in the baseline (OLS) estimation, which could result, in particular, from omitted
variables and reverse causality, we apply an IV approach. Our instrument for the composition of
federal procurement relies on the idea that federal procurement in high-tech industries is relatively
high in states whose governors belong to the House majority party. Previous results in the political
science literature suggest that politicians use procurement to reward their voters and to increase
their re-election chances. Governors are more able to channel procurement to their states if they
belong to the House majority party, which holds the majority in committees authorizing and
appropriating funds. Moreover, procurement in high-tech industries is particularly attractive for
politicians because, for instance, it typically has a higher publicity effect than other types of
procurement (e.g., Cohen and Noll, 1991; Steinberg, 1995).

Our results provide support for the theoretical prediction of a positive effect of a shift in the
composition of public purchases to the benefit of high-tech industries on private R&D activities.
According to the results of the OLS estimation with state and year fixed effects, doubling the pro-
curement high-tech share is associated, ceteris paribus, with an increase in weekly hours worked in
R&D of approximately 2.6 percent. This result is robust under a range of alternative specifications.
In the IV estimations, the coefficient of interest remains almost unchanged, but is estimated with
far less precision. However, tests for exogeneity provide no sign of endogeneity of the technological
intensity of procurement, suggesting that we might trust the more efficient OLS estimations. Thus,
we argue that we can cautiously interpret the original uninstrumented estimates to show a positive
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causal effect of the technological content of government procurement on firms’ R&D activities.
Can a shift in the composition of government purchases in favor of high-tech industries spur

firms’ R&D investment and work as a de facto innovation policy tool (Cozzi and Impullitti, 2010)?
In general, our results give rise to the idea that the government’s purchasing behavior plays an
important role in companies’ R&D decisions, whether this is actively sought by the government or
not. One consequence to be drawn from our analysis is that policy should not be agnostic about
the impact of their purchasing behavior on private R&D. If high-tech and low-tech solutions for
the same problem are available, public authorities should take into account that purchasing the
high-tech solution may come along with the additional benefit of an increase in private R&D. In
acknowledging the relevance of the government as a customer on the innovative behavior of firms,
we complement earlier studies on the role of profit incentives and market size in innovation (e.g.,
Acemoglu and Linn, 2004; Schmookler, 1966).

We believe that the research question addressed in this paper possesses a substantial degree of
policy relevance. Some major initiatives have recently been launched to encourage public author-
ities to take into account the technological content of products and services in their purchasing
decisions (Edler and Georghiou, 2007, and the references cited therein). However, it is important
to note that the fundamental procurement function is to deliver quality goods and services in a
timely fashion and at a reasonable price. The deliberate use of public procurement as a tool for
R&D and innovation policy implies distorting this demand and may come at substantial social
costs. First, there is less transparency in the procurement process when factors other than the
price are the main decision criteria. Second, the government procurement in certain industries
might signal, from companies’ point of view, that certain technological paradigms in economic
development are perceived to have greater potential than others. Consequently, firms might be
more likely to invest in certain technologies than they would have in the absence of the government
demand signal. This presents the government with the burden of selecting very carefully which
technologies to back to avoid potential lock-ins into inferior technologies (Arthur, 1989; Cowan,
1990).

Third, because of the existence of negative externalities associated with private R&D our
model suggests that the relationship between R&D and social welfare is nonlinear. In other words,
from a social point of view, there could also be “too many” productive resources employed in the
R&D process. If this was the case, a procurement policy to induce additional R&D would not
be desirable from a social viewpoint. We have not yet accounted for such welfare considerations
in the empirical analysis. Fourth, procedural aspects of awarding federal procurement contracts
(for example, competitive versus non-competitive procedures) are neglected in this paper but may,
in general, play an important role (Lichtenberg, 1988). Finally, giving reasonable policy advice
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requires a cost-benefit comparison of procurement with other innovation policy tools, such as R&D
subsidies or R&D tax credits (e.g., David, Hall and Toole, 2000; Wilson, 2009). Only after having
taken into account the potential (opportunity) cost of the deliberate use of public procurement to
promote innovation are we able to judge its suitability for furthering the objectives of innovation
policy. These are important avenues for future research.
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A Appendix

A.1 Determining the Unique Ratio Between ε1 and ε2

In this Appendix, we derive the relation between ε1 and ε2 for the public demand in (12) rule to be
feasible. Recall that, by definition, the following holds:

´ 1
0 G (ω)dω ≡ Ḡ. Substituting the public

demand rule for G(ω) yields:

1ˆ

0

∞̂

1

(
Ḡ+ γε

)
dλdω

=
1ˆ

0


∞̂

1

Ḡg(λ)dλ+ γ


1

1−κˆ

1

−ε1g(λ)dλ+
∞̂

1
1−κ

ε2g(λ)dλ


 dω, (18)

where g(λ) is the Pareto density function with a scale parameter equal to one and a share
parameter equal to 1/κ. According to (9), we can express g(λ) as 1/κλ−(1+κ)/κ, which allows us to
rewrite (18) as:

1ˆ

0


1
κ
Ḡ

∞̂

1

λ−
1

1−κdλ+ γ

κ


1

1−κˆ
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−ε1λ
− 1

1−κdλ+
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1
1−κ

ε2λ
− 1

1−κdλ


dω.

Solving the integral above gives:

1ˆ

0

G(ω)dω = Ḡ+ γ
{
ε1
[
−1 + (1− κ) 1

κ

]
+ ε2 (1− κ)

1
κ

}
. (19)

By definition, the expression on the RHS of (19) is equal to Ḡ. It is now straightforward to
show that this relationship determines the unique ratio between ε1 and ε2, which is equal to:

ε1

ε2
= (1− κ) 1

κ

1− (1− κ) 1
κ

. (20)

Because the RHS of (20) is strictly positive, but smaller than one, it follows that ε1 < ε2.
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A.2 Expected Profit Stream of an Industry Leader

When we take into account (5), the expected value of the profit flow that accrues to the winner of
an R&D race in industry ω at time t can be written as (suppressing time and industry arguments
for notational convenience):

πe =
∞̂

1

λ− 1
λ

L (c+G)g(λ)dλ. (21)

We substitute for the Pareto density function, g(λ), and for public demand spending, G(ω), by
using (9) and (12). Equation (21) then becomes:

πe =
∞̂

1

L

κ

λ− 1
λ

λ−
1+κ
κ

(
c+ Ḡ+ γε

)
dλ. (22)

The term (λ− 1) (1/λ)λ−(1+κ)/κ can be simplified to (λ− 1)λ−2−1/κ. Keeping this in mind, we
can compute the integral (22) as being equal to:

πe = κ

1 + κ
L
{
c+ Ḡ+ γ

[
ε1
(
−1 + 2 (1− κ)

1
κ

)
+ ε22 (1− κ)

1
κ

]}
. (23)

In Appendix A, we showed that there exists a specific relationship between ε1 and ε2, given by
(20). We now make use of this result to eliminate ε1. Using (20), the integral above boils down to:

πe = κ

1 + κ
L

[
c+ Ḡ+ γε2

(
1

1− (1− κ) 1
κ

− 1
)]

. (24)

Notice that 0 < 1− (1− κ)1/κ < 1 for all κ ∈ (0, 1) and, thus, 1
/[

1− (1− κ)1/κ
]
> 1, leaving

the term in round brackets on the RHS of (24) positive. Rearranging (24) eventually allows us to
write the expected profit stream as:

πe = κ

1 + κ
L
(
c+ Ḡ+ γΓ

)
, (25)

where Γ ≡ ε2
(
1
/[

1− (1− κ)1/κ
]
− 1

)
> 0, defined for notational simplicity, is completely

determined by parameter values. Because the RHS of (25) does not depend on industry-specific
variables, πe is to be interpreted as the average value of profits that an industry leader in this
economy expects.
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A.3 Labor-Market Equilibrium

Labor demand in manufacturing equals the aggregate demand from both private and public con-
sumers (recall that the production function in manufacturing reads Y = Ly and that we assume
market clearing). The total employment in manufacturing is then given by:

LY (t) =
1ˆ

0

[
c(t)L(t)
λ (ω, t) + G (ω)L(t)

λ (ω, t)

]
dω

=
1ˆ

0

L(t)

c(t)
∞̂

1

λ−1g (λ)dλ+
∞̂

1

G (ω)λ−1g (λ)dλ

 dω.
Using the Pareto density function given in (9), as well as the public demand rule as specified

in (12) and (20), the total employment necessary to satisfy private and public consumers’ demand
for the consumption good can be calculated as:

LY (t) = L(t)c(t) + Ḡ− γκΓ
1 + κ

.

An equation for the R&D labor can be derived from solving (7) for the R&D input of a firm in
industry ω and then aggregating over the continuum of industries ω ∈ [0, 1]. Further taking into
account that we assume symmetric behavior, that is, the industry-level innovation rate I(ω, t) is
the same across industries at each point in time, we obtain:

LI(t) = I(t)X(t)
A

.

Labor-market clearing implies that L(t) = LY (t)+LI(t) is always fulfilled, which, when slightly
rewritten, gives (15).
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A.4 Existence and Uniqueness of the Steady State

Here, we solve for the steady state of this economy, in which all endogenous variables grow at
a constant (although not necessarily at the same) rate and research intensity I(t) is common
across industries. We already established in the main text that a constant growth rate constrains
constrains I, ẋ/x, and ċ/c to be constant over time, while the latter implies r(t) = ρ. Equations
(8), (14), and (15) represent a system of three equations in three unknowns x, c, and I. Solving
this system of equations allows us to uniquely determine the steady-state values for all endogenous
variables.

We first derive an expression for the equilibrium research intensity, I∗. Taking the logarithm
of the expression on the RHS of (7) and differentiating with respect to time yields, using (8):

I∗ = n

µ
. (26)

According to equation (26), the steady-state value of the research intensity is completely pinned
down by the population growth rate, n, and the parameter governing the R&D difficulty, µ.

Having determined the equilibrium value of I, we are now in the position to solve for the
steady-state values of x and c. Given (26) and that r = ρ holds along the steady state, the R&D
equilibrium condition (14) can be written as:

x(t)
A

=
κ

1+κ

[
c(t) + Ḡ+ γΓ

]
ρ+ n

(
1
µ
− 1

) . (27)

Equation (27) defines a negative linear relationship between the per capita private consumption
expenditures, c, and the relative R&D difficulty, x. The resource constraint (15) becomes:

1 = c(t) + Ḡ− γκΓ
1 + κ

+ n

ηA
x(t), (28)

defining a positive linear relationship between c and x. Equation (27) is an upward sloping
line in the (c, x) space while (28) is a downward sloping linear function in the (c, x) space. The
necessary and sufficient condition for both lines to have a unique and positive intersection is given
by Ḡ < 1. Solving the system of linear equations in (27) and (28) by applying Cramer’s rule
uniquely determines the steady-state values of x and c as:

x∗ = Aκµ(1 + γΓ)
n(1 + κ− µ) + µρ

, (29)
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c∗ = µρ(1 + κ+ γκΓ− Ḡ)− n[Ḡ(1 + κ− µ) + (1 + κ)(µ− 1) + γκµΓ]
n(1 + κ− µ) + µρ

. (30)

Finally, we calculate the steady-state growth rate of the economy. Because we refrain from
capital accumulation, the concept of growth in the model relates to growth in each individual’s
utility. This property is shared by all Schumpeterian growth models in which firms’ R&D efforts
are directed toward increasing the product quality, and the per capita consumption does not change
in equilibrium. However, even if the amount of goods consumed per person remains constant, the
individual utility in (2) augments when R&D turns out to be successful. To obtain an explicit
expression for the utility growth rate, we substitute for consumer demand in (2) by using (3):

log u(t) =
1ˆ

0

log
[

c(t)
λ (ω, t)

]
dω +

1ˆ

0

jmax (ω, t) log [λ (ω, t)] dω, (31)

where
´ 1

0 j
max (ω, t)dω is a measure of the number of quality improvements aggregated over all

industries, ω ∈ [0, 1]. The index jmax increases when firms are successful in innovating and engage
in R&D in all industries throughout time in any steady-state equilibrium. In each industry ω, the
(Poisson distributed) probability of exactly m improvements within a time interval of length τ can
be calculated as:

f(m, τ) = (Iτ)m e−Iτ
m! ,

where f(m, τ) represents the measure of products that are improved exactly m times in an
interval of length τ . Following Davidson and Segerstrom (1998),

´ 1
0 j

max (ω, t)dω then equals tI.
Taking this and (26) into account, differentiating (31) with respect to time yields the following
steady-state growth rate of the per capita utility:31

u̇(t)
u(t) ≡ g∗ = n

µ
κ. (32)

This completes the characterization of the steady state of this economy.

31 Notice that the first integral on the RHS of (31) is constant along the balanced-growth path. We further exploit
the fact that quality jumps follow a Pareto distribution, so, using (9),

´ 1
0 log [λ (ω, t)] dω = κ.
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A.5 Data Appendix

Federal Non-R&D Procurement

We use U.S. federal procurement data provided by FPDS-NG in the period from 1997 to 2007.
During the import of the raw data from the FPDS-NG data archives32, we performed data correc-
tions to accommodate changes in the industry code from the 1997 and 2002 NAICS to the 2007
NAICS system. Although most federal statistical agencies adopted NAICS codes already in 1997
to replace the Standard Industrial Classification (SIC) system, only a small fraction of contracts
in the FPDS-NG database are assigned a NAICS code in the years before 2001.

To be able to properly identify high-tech industries also in the years before 2001, we exploit the
fact that we have information on the PSC for almost all contracts. The FPDS-NG user’s manual
reports that the PSC is required to correlate to the selected NAICS code (GSA, 2008). Moreover,
according to the Federal Acquisition Regulation, the NAICS code “best describes the principal
nature of the product or service being acquired” GSA (2005, p. 19.1-3). Therefore, we develop a
PSC-NAICS concordance based on contract data for 2001 to 2009 for which both code categories
are available. Using this concordance table, we assign NAICS codes to all contracts for which an
industry classification had previously been missing.33 If more than one NAICS code applies to a
PSC, each of the respective industries receives a share of the contract’s total value with the share
being equal to the relative frequency of occurrence of the respective PSC-NAICS concordance.
This procedure circumvents that part of a contract’s value that gets “lost” during the aggregation
of contracts to the industry level. After having identified to which industries public purchases can
be assigned, we exclude federal procurement within the public sector (NAICS 92). For the reasons
mentioned in the main text, we also drop R&D procurement contracts, which can be identified
using the PSC.

We obtain state-level procurement data by using information on the state where the con-
tract was performed, which is mandatory for the procurement officers to report in the FPDS-NG
database (GSA, 2008). Moreover, information on the place of performance allows us to focus on
domestic federal procurement, excluding all government contracts performed outside the U.S. We
also exclude procurement contracts performed in the District of Columbia. The deflator used for
the conversion of current to constant contract value (base year 2000) is the Government Consump-
32 The raw data files are available at www.fpds.gov.
33 A further virtue of using the PSC-NAICS concordance to assign an industry classification code to contracts

without a NAICS code is that we can take into account contracts for which a NAICS code has not been reported
by the contracting agency for strategic reasons, for example, to circumvent size standards for certain contracts.
The FPDS-NG data show that the Department of Defense, in particular, does often not report NAICS codes
associated with its contract actions. An analysis conducted by the consultant Aronson LLC suggests that this
is mainly due to bypass size limitations for certain contracts (http://www.aronsonblogs.com/gcsg/?p=135).
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tion Expenditures and Gross Investment Index (GCEGII). We prefer GCEGII over the Consumer
Price Index because the “market basket of goods“ purchased by the federal government may be
significantly different from the purchases of the typical household.

Company R&D Employment and Wages

We use data from the Current Population Survey (May/ORG) for years 1997-2009 to construct
our sample of employment and wages in R&D occupations by state. CPS collects statistics on
the employment status of the labor force as well as educational attainment data and a variety
of demographic characteristics such as age, sex, race/ethnicity, and marital status. In addition
to that, the data are available by occupation, industry, state, and class of worker. Compared to
March CPS, which also contains data on weekly hours worked, May/ORG has the advantage that
it asks about working times, wages, etc. at the time of the survey. Instead, March CPS reports
employment statistics as retrospective measures, referring to the previous year. As pointed out
by Lemieux (2006), another important difference between both surveys is that in May/ORG an
individual’s probability to be asked in the survey depends on the number of weeks worked during
a year. This is because the May/ORG is a point-in-time survey. On the contrary, information
in the March CPS can be retrieved irrespective of how many (nonzero) weeks an individual has
worked during the year. For more details on variable definitions and sample design of the CPS,
see BLS (2011) and Bowler and Morisi (2006).

Our sample includes wage/salary workers ages 16 to 64 who are employed in the private sector
(Acemoglu and Autor, Forthcoming; Autor, Katz and Kearney, 2008). We include part-time and
full-time workers, but exclude self-employed persons. If employed persons have two or more jobs
in the sample reference week, that is, the week before the survey was conducted, we classify them
in the job at which they worked the greatest number of hours. To ensure representativeness,
weekly hours worked and hourly wages are weighted by CPS sample weights. When constructing
our variables for labor supply and hourly wages, we follow closely the calculations described in
Acemoglu and Autor (Forthcoming) and Autor, Katz and Kearney (2008).

In principle, May/ORG offers two measures to construct the labor supply variable, hours worked
in the week prior to the survey and usual weekly hours. The problem of using the former measure
is that, for example, persons who normally work 36 hours a week would be classified as part-time
if they were off for one or more days of holiday in the week prior to the survey. However, usual
weekly hours has a nonnegligible nonreport rate. As reported by Autor, Katz and Kearney (2008),
beginning with the major CPS redesign in 1994, workers whose weekly hours vary are not asked
to report usual weekly hours. Therefore, we use hours worked last week to measure labor supply.
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We calculate hourly wages as the reported hourly earnings for those paid by the hour and the
usual weekly earnings divided by hours worked last week for non-hourly workers. Since earnings
are right-censored, we “windsorize” wages by multiplying top-coded earnings observations by 1.5.
All earnings are converted to $2000 by the chain-weighted (implicit) price deflator for personal
consumption expenditures (PCE).34

We identify R&D occupations by using CPS’s occupational classification system. Since 1983,
the CPS employs the Standard Occupational Classification (SOC) system. In accordance with the
Bureau of Labor Statistics, we define as R&D occupations those which are scientific, engineering,
and technician occupations (Hecker, 2005). Unless it was an obvious R&D-related occupation,
such being the case for scientists (except social scientists) and engineers, we identified workers
engaged in R&D by checking the job descriptions in the Dictionary of Occupations (BLS, 2004).
We define R&D workers as “increasing scientific knowledge and using it to develop products and
production processes” (Hecker, 2005, p. 58). Therefore, we exclude occupations that only have
a support function for R&D, such as managers who plan and coordinate R&D. We also exclude
social scientists, most health occupations, and (University) teachers.

The above steps were performed for occupations in the 2000 SOC, which is used in the CPS
since 2000. For years 1997-1999, occupations in the CPS were classified according to the 1990
Census Occupational Classification System. The comparability of both classifications is somewhat
limited, although some occupations are found in both classification systems. For example, both
the old 1990 Census Code and the 2000 SOC include the occupation “computer programmers.”
However, the 2000 SOC contains several computer-related occupations that were not included
in the older classification system. Still, workers in these newly classified occupations are likely
to have been reported as computer programmers in the past. Moreover, in years 2000-2002, both
occupational classification systems were available in the CPS, giving us the opportunity to identify
concordances between the two classifications.

According to our definition, 39 out of 503 (7.8 percent) 1990 Census occupations are R&D-
related, while 50 out of 449 (11.1 percent) 2000 SOC occupations are R&D occupations.35 Table
A.1 provides an overview of R&D occupations by classification system.

34 Notice that Acemoglu and Autor (Forthcoming) and Autor, Katz and Kearney (2008) also drop allocated earnings
observations and hourly earners above or below certain wage thresholds. As we are not primarily interested in
the effects on wages, we keep those observations. However, our results remain qualitatively unchanged when
implementing these data adjustments.

35 In addition to the R&D occupations we have identified, we would have liked to include life scientists, all other
(SOC 19-1099); environmental science and protection technicians, including health (SOC 19-4091); forensic
science technicians (SOC 19-4092); as well as forest and conservation technicians (SOC 19-4093). Unfortunately,
the CPS does not contain these occupations.
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Table A.1: R&D occupations in 1990 Census Code and 2000 SOC.

1990 Census Code Description 2000 SOC Description
44 Aerospace Engineers 15-1011 Computer and information scientists,

research
44 Aerospace Engineers 15-1011 Computer and information scientists,

research
45 Metallurgical and Materials Engineers 15-1021 Computer programmers
46 Mining Engineers 15-1031 Computer software engineers,

applications
47 Petroleum Engineers 15-1032 Computer software engineers, systems

software
48 Chemical Engineers 15-1041 Computer support specialist
49 Nuclear Engineers 15-1051 Computer systems analysts
53 Civil Engineers 15-1081 Network systems and data

communications analysts
54 Agricultural Engineers 15-2021 Mathematicians
55 Electrical and Electronic Engineers 15-2031 Operations research analysts
56 Industrial Engineers 15-2090 Miscellaneous mathematical science

occupations
57 Mechanical Engineers 17-2011 Aerospace engineers
58 Marine and Naval Architects 17-2021 Agricultural engineers
59 Engineers, n.e.c. 17-2031 Biomedical engineers
63 Surveyors and Mapping Scientists 17-2041 Chemical engineers
64 Computer Systems Analysts and

Scientists
17-2051 Civil engineers
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1990 Census Code Description 2000 SOC Description
65 Operations and Systems Researchers and

Analysts
17-2061 Computer hardware engineers

68 Mathematical Scientists, n.e.c. 17-2071 Electrical engineers
69 Physicists and Astronomers 17-2072 Electronics engineers, except computer
73 Chemists, Except Biochemists 17-2081 Environmental engineers
74 Atmospheric and Space Scientists 17-2111 Health and safety engineers, except

mining safety engineers and inspectors
75 Geologists and Geodesists 17-2112 Industrial engineers
76 Physical Scientists, n.e.c. 17-2121 Marine engineers and naval architects
77 Agricultural and Food Scientists 17-2131 Materials engineers
78 Biological and Life Scientists 17-2141 Mechanical engineers
79 Forestry and Conservation Scientists 17-2151 Mining and geological engineers,

including mining safety engineers
83 Medical Scientists 17-2161 Nuclear engineer
185 Designers 17-2171 Petroleum engineers
213 Electrical and electronic technicians 17-2199 Engineers, all other
214 Industrial engineering technicians 19-1010 Agricultural and food scientists
215 Mechanical engineering technicians 19-1013 Soil and plant scientists
216 Engineering technicians, n.e.c. 19-1021 Biochemists and biophysicists
218 Surveying and mapping technicians 19-1022 Microbiologists
223 Biological technicians 19-1023 Zoologists and wildlife biologists
224 Chemical technicians 19-1029 Biological scientists, all other
225 Science technicians, n.e.c. 19-1031 Conservation scientists
229 Computer programmers 19-1042 Medical scientists, except epidemiologists
233 Tool programmers, numerical control 19-2012 Astronomers and physicists
235 Technicians, n.e.c. 19-2021 Atmospheric and space scientists
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1990 Census Code Description 2000 SOC Description
19-2031 Chemists
19-2041 Environmental scientists and specialists,

including health
19-2042 Geoscientists, except hydrologists and

geographers
19-2099 Physical scientists, all other
19-4011 Agricultural and food science technicians
19-4021 Biological technicians
19-4031 Chemical technicians
19-4041 Geological and petroleum technicians
19-4051 Nuclear technician
19-4099 Life, physical, and social science

technicians, all other
27-1021 Commercial and industrial designers
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A.6 Summary Statistics and Further Robustness

Table A.2: Descriptive statistics.

Mean Std. Dev. Min Max
Company employment R&D 4.339 5.216 0.115 36.113
Company employment total 75.406 81.269 5.608 456.439
Company employment R&D share 5.281 1.703 1.205 10.070
Hourly wage R&D 3.136 4.073 0.577 30.020
Federal non-R&D procurement high-tech 1.500 2.659 0.003 17.708
Federal non-R&D procurement all other 2.077 2.742 0.033 25.894
High-tech share 32.957 19.624 1.520 84.563
GDP 207.531 247.729 15.178 1,576.801
Population 5.793 6.355 0.489 36.962
GDP per capita 34,726 6,639 21,736 59,399

Notes: This table presents summary statistics on our main variables for U.S. states during the period from 1997 to
2009. The total number of state-year observations is 650. Company employment R&D is the number of weekly hours
worked in R&D occupations. Company employment total is measured as the number of weekly hours worked in all
occupations. Dividing weekly hours of R&D workers by total weekly hours gives the company R&D employment
share. Hourly wage R&D is the state-level sum of per-hour wages earned by workers in R&D occupations. The
company employment variables, as well as the within-state population, are reported in millions. Hourly wage is
measured in millions of constant (2000) dollars. We use CPS sampling weights for all calculations. Federal non-
R&D procurement in high-tech industries, federal non-R&D procurement in all other industries, and the GDP are
measured in billions of constant (2000) dollars. High-tech share expresses federal non-R&D procurement in high-
tech industries as a share of total federal non-R&D procurement. Company employment R&D share and high-tech
share are measured in percent. GDP per capita is reported in absolute numbers.
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Table A.5: Technological intensity of government demand and private R&D: IV estimates with
twice-lagged instrument.

(1) (2) (3) (4)
2SLS 2SLS LIML LIML

First Stage Second Stage First Stage Second Stage

Coincidence Gov-House (t-2) 0.093∗ 0.093∗
(0.050) (0.050)

High-Tech Share (log, t-1) 0.026 0.027
(0.082) (0.073)

GDP Per Capita (log) -0.028 -0.048 -0.028 -0.048
(0.452) (0.088) (0.452) (0.088)

Total Hours Worked (log) -0.706 0.425∗∗∗ -0.706 0.425∗∗∗
(0.594) (0.097) (0.594) (0.093)

Hourly Wage R&D (log) - 0.024 0.761∗∗∗ - 0.024 0.761∗∗∗
(0.134) (0.028) (0.131) (0.134)

Time Fixed Effects Yes Yes Yes Yes
State Fixed Effects Yes Yes Yes Yes

Observations 650 650 650 650
F -statistic (excluded instrument) 3.480 3.480
R-squared (within state) 0.043 0.180 0.044 0.188
F -statistic 1.420 264.622 1.420 264.754
Durbin-Wu-Hausman test p-value 0.993 0.993

Notes: Results from a 2SLS (Columns (1) and (2)) and LIML (Columns (3) and (4)) estimation of the effect of
the technological composition of government procurement on private R&D employment. The first-stage results are
presented in the odd columns, while the even columns contain the second-stage results. The instrument is a binary
variable taking the value of 1 if the state governor belongs to the majority party in the House and 0 otherwise. The
instrument is lagged one period behind the potentially endogenous regressor to take into account delays between
the appropriation of federal funds and the moment when these funds are actually spent. In the LIML estimation,
the user-specified constant (alpha) is set to 1 (see Temple and Wößmann, 2006). Robust standard errors (clustered
by state) in parentheses. If Huber-White robust standard errors are used instead of clustered errors, the instrument
is significant at the 1 percent level and the F -statistic of the excluded instrument is equal to 8.890. * 10 percent
level of significance. ** 5 percent level of significance. *** 1 percent level of significance.
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